A hitting set construction, with application to arithmetic circuit lower bounds

نویسنده

  • Pascal Koiran
چکیده

A polynomial identity testing algorithm must determine whether a given input polynomial is identically equal to 0. We give a deterministic black-box identity testing algorithm for univariate polynomials of the form $\sum_{j=0}^t c_j X^{\alpha_j} (a + b X)^{\beta_j}$. From our algorithm we derive an exponential lower bound for representations of polynomials such as $\prod_{i=1}^{2^n} (X^i-1)$ under this form. It has been conjectured that these polynomials are hard to compute by general arithmetic circuits. Our result shows that the"hardness from derandomization"approach to lower bounds is feasible for a restricted class of arithmetic circuits. The proof is based on techniques from algebraic number theory, and more precisely on properties of the height function of algebraic numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hitting Set Construction, with Applications to Arithmetic Circuit Lower Bounds

A polynomial identity testing algorithm must determine whether a given input polynomial is identically equal to 0. We give a deterministic black-box identity testing algorithm for univariate polynomials of the form Pt j=0 cjX αj (a+ bX)j . From our algorithm we derive an exponential lower bound for representations of polynomials such as

متن کامل

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth

We show that over fields of characteristic zero there does not exist a polynomial p(n) and a constant-free succinct arithmetic circuit family {Φn}, where Φn has size at most p(n) and depth O(1), such that Φn computes the n × n permanent. A circuit family {Φn} is succinct if there exists a nonuniform Boolean circuit family {Cn} with O(logn) many inputs and size n such that that Cn can correctly ...

متن کامل

Small hitting-sets for tiny arithmetic circuits or: How to turn bad designs into good

Research in the last decade has shown that to prove lower bounds or to derandomize polynomial identity testing (PIT) for general arithmetic circuits it suffices to solve these questions for restricted circuits. In this work, we study the smallest possibly restricted class of circuits, in particular depth-4 circuits, which would yield such results for general circuits (that is, the complexity cl...

متن کامل

Hitting-Sets for ROABP and Sum of Set-Multilinear Circuits

We give a nO(log n)-time (n is the input size) blackbox polynomial identity testing algorithm for unknown-order read-once oblivious arithmetic branching programs (ROABP). The best time-complexity known for blackbox PIT for this class was nO(log 2 n) due to Forbes-SaptharishiShpilka (STOC 2014). Moreover, their result holds only when the individual degree is small, while we do not need any such ...

متن کامل

Arithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making

The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0907.5575  شماره 

صفحات  -

تاریخ انتشار 2009